### Traffic Engineering or Network Engineering?

The transition to dynamic management of multi-layer networks

Adrian Farrel Old Dog Consulting adrian@olddog.co.uk



# Agenda

- Multi-Layer Networks
- Planning Capacity and Placing Traffic
- Computation tools
- Integrated Multi-Layer Networks
- The Virtual Network Topology (VNT)
- Capacity-on-Demand
- Virtual Topology Manager (VNTM)



## **Multi-Layered Networks**

- All data networks are multi-layered networks
- Data links may be physical links or virtual links
- Provisioning data connectivity in a network utilises data links from a lower layer
- Provisioning data links is out of scope for the higher layer network
  - Fibre planning is a long-term activity
  - Capacity planning is done with caution
  - Network layers are administered separately



### The Multi-Layered Network



### How Does GMPLS Handle Layers?

• Hierarchical LSPs (tunnels)



- Lower layer may be a different switching type (TDM, WDM, ...)
- Lower layer may be a sub-type (OC48, OC12, etc.)
- Lower layer may be an administrative boundary

# The Simplex Server Model

- The ratio of higher-layer LSP to lowerlayer tunnel is 1:1
- Matching (or nearly matching) capacities
- Used at a technology boundary
  - Data is encapsulated to be carried across the lower layer
  - Link capacities are similar
- Used at an administrative boundary
  - May use LSP Stitching when technologies are identical



# The Multiplex Server Model

- More than one higher-layer LSP is multiplexed into the tunnel
- Tunnel capacity is typically much larger than the LSP capacities
- What happens to the unused tunnel bandwidth if there is only one LSP?

- "Wasted bandwidth"

- Doesn't work for stitching (that is 1:1)
  - Only applies when there is a technology boundary
    - Note that packet is a special case

# **Capacity Planning**

- Where do the data links come from?
  - From the lower layers
- Physical links must be provisioned
  - Slow and expensive
- Logical links must be provisioned
  - Potentially quick, but uses expensive resources
- Capacity planning is typically an off-line activity
  - What capacity is needed in the upper layers?
    - What are the current and future traffic demands?
    - What additional services/protection do we want?
  - What is the impact on availability of lower layer resources?
    - Prediction of future capacity demand in the upper layer
    - There may be multiple higher-layer networks.



# **Traffic Engineering**

- Where shall I place traffic in my network?
- Traditionally an off-line activity, now on-line
- Optimise the use of network resources
  - Avoid congestion
  - Increase network traffic load
  - Differentiate services (QoS, protection, etc.)
- Multi-layer considerations
  - Reduce capacity requests
  - Link-level protection
  - Shared Risk Link Groups (SRLGs)
  - Intelligent capacity request
    - Multi-layer Traffic Engineering



# **Computation Tools**

- Path Computation Element (PCE)
- A network entity that computes paths
  - On-line or off-line
  - Part of the node, NMS, or separate
- Main intention is provide solutions for multidomain traffic engineering
  - Topology information is limited by domain
  - Can't normally compute a path across domains
    - Might not find any path
    - Probably won't find optimal path
- Note that a multi-layer network is a multi-domain network



# Integrated Multi-Layer Networks

- Better to say "Integrated Multi-Technology Networks"
- TE visibility is not limited to one layer
  - A single routing instance distributes information about multiple layers
  - Path computation can take account of resource availability in lower layers
- Tunnels across lower layers are triggered 'on-demand'



### The Virtual Network Topology (VNT)

- The set of virtual links provided by a lower-layer network to a higher-layer network
  - The tunnels that provide connectivity
- The higher layer sees these as real data links
  They form part of the TE Database
- Each virtual link may be:
  - Configured and pre-signaled (capacity planning)
  - Triggered on-demand and made available for general use (by integrated multi-layer network)
  - Configured in advance but signaled on-demand (flexible capacity planning)



### Is Capacity On-Demand Dangerous?

- Yes! Depending on the topology
- Unimportant, low-capacity demand may "steal" the lower-layer resources
- Important, high-capacity demand is blocked
- Proper capacity planning might have predicted this
- Management control is required

### Is Capacity On-Demand Pointless?

• Yes! Depending on the topology.



- If the physical connections exist and are dedicated, then just allocate the capacity
- We see this particularly with legacy topologies
- On-demand provisioning can take a few seconds
  - May be too slow for higher-layer network.



#### Can Capacity On-Demand Be Good?

- Yes! Depending on the topology
- Complex mesh in lower-layer core network
  - Cannot provide full mesh connectivity
- Higher-layer network demands vary over time
- GMPLS allows rapid provisioning in the lower-layer network





# The Role of Policy

- Microflows must not be allowed to trigger high-capacity allocation in the lower layer
   Unless that is what the operator wants
- Adding resources to the VNT is a policy
- There are implications for:
  - Billing
  - Service support
  - Multiple higher-layer networks
- Network engineering and planning still has a role in a dynamic multi-layer network

#### Virtual Network Topology Manager (VNTM)

- A new functional component
- Responsible for managing the VNT
  - Assesses demands
  - Is governed my policy
  - Takes commands from management
  - Establishes LSPs in lower layer
  - Causes the creation of TE links in higher layer
  - Re-grooms traffic to free up unused resources
- Interacts with PCEs in both layers



### **VNT** Manager

- VNT Manager acts on triggers from operators and from higher layer
- Uses PCE to determine paths in lower layer
- Uses management systems to provision LSPs
- Causes new TE links to be advertised



### References

- LSP hierarchy
  - RFC 4206
  - draft-ietf-ccamp-lsp-hierarchy-bis
- Multi-layer networking
  - draft-ietf-ccamp-gmpls-mln-reqs
- PCE
  - draft-ietf-pce-architecture
  - draft-ietf-pce-inter-layer-req
  - draft-ietf-pce-inter-layer-frwk
- VNT Manager
  - draft-oki-pce-vntm-def



#### Questions?

#### adrian@olddog.co.uk

