Towards Convergence of GMPLS and ASON standards

Dr. Lyndon Y. Ong Ciena Corporation June 2006

Overview

- Current Status
- Efforts towards Convergence
 - Routing Protocol
 - Signaling Protocol
- Interworking Efforts
- Challenges
- Conclusion

ASON and GMPLS

	GMPLS	ASON	Status
Signaling:			
-RSVP	RFC 3473	G.7713.2	Interworking reqd
-CR-LDP	RFC 3472	G.77133	Deprecated
-PNNI		G.7713.1	No equivalent
Routing:			
-Reqts	RFC 3630, 4202	G.7715, G.7715.1	Converging
-OSPF-TE	RFC 4203	tbd (OIF DDRP)	Good chances
-IS-IS	RFC 4205	tbd	Good chances
Discovery	RFC 4204	G.7714, G.7714.1	Not aligned in function or protocol

Routing Efforts - Process

- Discussion between IETF, ITU-T and OIF
 - GMPLS routing specifications
 - ITU-T G.7715 and G.7715.1 requirements
 - OIF prototyping efforts
- Formation of joint design teams
 - Requirements
 - Evaluation of GMPLS protocols for ASON routing
- Creation of RFCs
 - RFC 4258
 - draft-ietf-ccamp-gmpls-ason-routing-eval-02.txt (approved)

Routing Topics: Client Reachability

- ASON Model assumes that client devices have a separate naming/addressing space
- Client connectivity is not advertised within the network using the internal routing protocol
- Instead reachability to client addresses may be advertised

2006

Routing Topics : Separation of Control Entities

LSR Model

2006

ASON Model

- ASON Model assumes control/transport separation
 - single Routing Controller could support many Network Elements
 - single Signaling Controller could support different set of NEs
 - example case: Proxy server for legacy domain

Routing Topics : Bandwidth Availability

- Partially occupied OC48 example:
- simple bit/sec measure does not accurately indicate availability for each signal type
- position of occupied timeslots affects availability for contiguous concatenation
- availability per signal type would be more accurate

iPOP2006, 22-23 June. 2006, Tokyo, Japan

Routing Topics : Adaptation Capabilities

- Link advertising should reflect
 - whether link end is TCP or CP
 - what kinds of adaptation are supported at the link end
 - useful in routing to the right adaptation function

Routing Topics : Hierarchy

• G.7715 Routing Model

2006

- allows routing areas to exist within routing areas
- each area is opaque to the outside
- multiple levels of areas may exist as administered by the carrier

🔹 iPOP2006, 22-23 June. 2006, Tokyo, Japan

Hierarchy Requirements from G.7715/7715.1

- Distinguishing between different types of information
 - especially when sourced from a different level
- Loop avoidance
 - avoid feeding of information up or down leading to looping of advertisements
- Upward mapping or translation
 - configured or abstracted topology is advertised externally
- Downward distribution
 - received external topology is distributed internally

iPOP2006, 22-23 June. 2006, Tokyo, Japan

Results

- Proposed solutions in draft-dimitri-ccamp-ason-routingsol-01.txt
 - Many thanks to Dimitri Papadimitriou!
- Passed initial comments by CCAMP WG
- Currently under review by OSPF and IS-IS experts
- Will need review by ITU-T and OIF
 - OIF has already indicated support in principle
- Headed towards WG draft, hopefully approval in Nov 06

Proposals in draft-dimitri

- Add client reachability advertisement
 - extension of the Node Address TLV
 - includes associated TE Router ID
- Add Local/Remote TE Router ID to TE Link LSA
 modeled after
- Add per-signal-type bandwidth extension

 extension of the Interface Switching Capabilities TLV
- Add Adaptation TLV
- Start to include "hooks" for hierarchy support

Comparison with OIF prototyping

- OIF DDRP prototype tested in 2003, 2004 and 2005
- DDRP TNA Reachability TLV
 - includes Node ID/TNA pairing
- DDRP Local and Remote Node ID TLV in TE Link LSA
 two TLVs rather than one
- DDRP Modified ISC TLV
 - does not include bit-per-second bandwidth measurement
- OIF has not yet prototyped selective adaptation – future topic for multi-layer connections
- OIF has not yet prototyped >1 level hierarchy
 - future topic for more complex carrier networks

Signaling Convergence (or lack of)

- Parallel work in IETF, ITU-T and OIF
 - OIF UNI specification
 - GMPLS RSVP-TE specification (RFC 3473)
 - ITU-T Recommendation G.7713.2
- Roughly similar timeframes, but incompatible
 - Same base message set
- OIF and ITU-T specs have:
 - Different session object classes and formats
 - Different addressing model
 - Some procedural differences
- Where to go from here?
 - Difficult: specifications already approved and published

ASON Session Concept from G.7713.2

- Each segment is its own RSVP session
- end-to-end information is carried separately in G_UNI
- Combination causes an incompatibility with GMPLS assumptions of a single (or at least uniquely mapped) end-to-end session

2006

Addressing Topics

- Client address is not mapped uniquely to network address but is mapped to ERO (may be partially mapped) and carried along for further use
- Similar to a telephony numbering model
- Distinct from a VPN addressing model where there is always a oneto-one mapping to a distinct network address

Interworking Situations

- Potential interworking includes:
 - ASON UNI GMPLS I-NNI and reverse
 - GMPLS Overlay ASON I-NNI/E-NNI and reverse
 - GMPLS ASON I-NNI/E-NNI and reverse
- Currently being documented as draft OIF Guidelines based on implementation experiences

Ways to move forward

- G.7713.2 is approved and has implementations
- RFC 3473 is approved and has implementations
- How to reconcile the two? Possible activities
 - Document the interworking of G.7713.2 and RFC 3473
 - Define extensions to RFC 3473 as necessary to meet the functional requirements of G.7713
 - Document the mapping of RFC 3473 and extensions to G.7713 abstract messages and parameters

Conclusions

- Convergence is proceeding well in ASON and GMPLS
 routing protocol
 - supported actively by participants with overlapping memberships
 - learned from the history of the signaling protocols
 - better commitment from standards bodies to interwork
- Convergence is slow for now on signaling
 - protocol specifications are already approved with misalignments
 - future movement may be tricky
- Other areas remain to be worked but may be more local scope, e.g., discovery

iPOP2006, 22-23 June. 2006, Tokyo, Japan