

Layer 1 Virtual Private Networks: Driving Forces and Current Status

Tomonori Takeda, NTT takeda.tomonori@lab.ntt.co.jp

- Background
 - Requirements for Transport Network
 - Solution Approach
- Overview of L1VPNs
 - Concept
 - Impact on Operations
- Key Technical Areas and Current Status
 - Control Plane
 - Management Plane

- Background
 - Requirements for Transport Network
 - Solution Approach
- Overview of L1VPNs
 - Concept
 - Impact on Operations
- Key Technical Areas and Current Status
 - Control Plane
 - Management Plane

Traditional Transport Network

- Limited in flexibility, slow in provisioning
 - Network architecture: SONET/SDH controlled by proprietary NMS/EMS
 - Service order: By paper or e-mail

Requirements

- Faster operation
 - Slow provision for increasing traffic = loss of business
- Support of unforeseen traffic increase
 - Difficult to predict when and where additional capacity is required
- Cost reduction
 - Carriers are facing more and more severe competition

 GMPLS suite of protocols realize dynamic, automatic provisioning, with standardized mechanisms

Network Model

- Separate transport network model ("Peer model")
 - Early deployment ?
- Shared transport network model among/within carriers ("VPN")
 - Common in large carrier networks
 - Promising
 - CAPEX/OPEX reduction
 - Risk reduction (Unforeseen future traffic increase in service networks can be multiplexed)

Transport Technologies

IP/MPLS	Layer 1 (optical, SONET/SDH)
Fine granularity (continuous capacity increase)	Coarse granularity (discrete capacity increase)
Flexibility by packet transport nature (capacity change between any pair of sites)	Flexibility by GMPLS
Packet level traffic separation	Hard traffic separation (strict QoS)
Difficulty in supporting L1 technologies	Support of any client signal → Further multiplexing
Concern on feasibility for "big fat router"	Expected to be feasible for huge capacity

- Background
 - Requirements for Transport Network
 - Solution Approach
- Overview of L1VPNs
 - Concept
 - Impact on Operations
- Key Technical Areas and Current Status
 - Control Plane
 - Management Plane

Concept of L1VPNs

- Enables dynamic, automatic L1 connection provisioning, over shared L1 network
- Progressively applies standardized mechanisms (i.e., GMPLS)

IP+Ontical Network

Example Application Scenarios

• Mid-to-Long term traffic increase Link capacity Traffic Provisioning

Tentative capacity addition

 Tentative traffic (e.g., by failure, or tentative traffic pattern)

Dynamic topology reconfiguration

Noon-to-night traffic variation

L1VPNs Service/Architectural Models

- Network control and management
 - Virtual separation of L1 network controlled and managed by GMPLS
- Service interface
 - Control plane and/or Management plane
- Factors for consideration
 - GMPLS usage, trust relationship, etc

Impact on Operations

- Operation transition by dynamic, automatic provisioning
 - Spare access links (including hardware package order and installation)
 - Automatic provisioning without human interruption

Analysis

- Is it economically feasible to prepare spare access links?
 - If traffic is growing rapidly, this is a MUST
- Then, why you wait and rely on dynamic provisioning, rather than set up a connection at that time?
 - Cost reduction: Resource reduction in the provider network, low-cost service
 - Flexibility: For traffic increase between arbitrary pair of sites ("VPN" service)
- If access links are cheap, or have multiplexing capabilities (e.g., WDM IF, Channelized IF), makes more sense

- Background
 - Requirements for Transport Network
 - Solution Approach
- Overview of L1VPNs
 - Concept
 - Impact on Operations
- Key Technical Areas and Current Status
 - Control Plane
 - Management Plane

Key Technical Areas

- Control Plane
 - Interface definition, protocol specifications
- Operation and Management Functionalities
 - Automatic quality test tool
 - Network planning tool
 - When to upgrade network
 - Service management
 - Security/Confidentiality
 - Accounting

Control Plane

- Various types of interface definition, depending on trust relationship and customer requirements in ITU-T and IETF
 - Management plane service interface
 - Management-based service model
 - Control plane service interface
 - Signaling-based service model
 - Signaling and routing service model
- Various pieces of existing GMPLS protocols, on-going discussion for a common framework and further enhancement in IETF
 - L1VPN framework (draft-takeda-l1vpn-framework)
 - L1VPN applicability (draft-takeda-l1vpn-applicability)
 - GMPLS UNI (draft-ietf-ccamp-gmpls-overlay)
 - GVPN (draft-ouldbrahim-ppvpn-gvpn-bgpgmpls)
- Some early testing accomplished in interoperability test event

GMPLS usage for L1VPNs

<u>Please visit the exhibition booth (@NTT)</u> for demos and additional information

