

IP + Optical in the Next Generation Network

Rajiv Ramaswami GM Optical, Cisco Systems

Networks in Transition Today: Service Specific Networks

Cisco.com

Narrowband Access Network

Broadband Access Network

> Radio Access Network

SONET/SDH Access Network

High Speed (Ethernet)
Access Network

Voice Network (Circuit)

TDM Network (Circuit)

FR/ATM Network (Packet)

Public IP Network (Packet)

Private IP/MPLS Network (Packet)

Optical Network (Circuit)

Challenges:

- Capex
 - Opex
- Service Velocity

Networks in Transition Future: One Network, Many Services

Cisco.com

Broadband Access Network

Radio
Access
Network
2.5G/3G/4G/WLAN

SONET/SDH Access Network

High Speed (Ethernet)
Access Network

Access and core Networking:

End-End Data Delivery

- Core networks: IP+WDM
- Access Networks: NG SDH with packet integration
- Boundaries between packet and optical blurring
- Integration of management and control planes

IP+Optical Integration in the Core

- Packet layer convergence to IP/MPLS is starting to deliver CAPEX and OPEX savings in core networks
- Significant additional CAPEX/OPEX saving can be had by converging the IP layer and the optical layer

Why Converge Over a True Optical Layer

Cisco.com

Only a true optical layer can accommodate such traffic growth!!!

IP+Optical Building blocks

- 1. Colored interfaces directly on the router
- 2. Switched Optical Layer
- 3. Integrated management
- 4. Integrated control plane

CAPEX Issues with Current Architecture

Many non-revenue generating costly interconnections

Cisco.com

IP Source/Sink Nodes

SR (W) SR (P) SR (W) 2. Cross Connect EXC) 3. SR (P) SR (W) WDM (P) WDM (W) **WDM Transport**

Issues:

- **High CAPEX** especially at 40G!
- **High OPEX: power** consumption & footprint
- Lower reliability

Transit Nodes

Cisco's IP+Optical Strategy: Simplifying the Network and Reducing its Cost

Cisco.com

IP Source/Sink Nodes

Transponder-less network:

- 1. No conversion form SR to λ
- 2. No regens

Issues solved:

- 1. Racks of transponders eliminated
- 2. Reduced number of O-E-O conversions increases reliability

Transit Nodes

Addressing the Operational Challenge (1):

Making DWDM operationally friendly

- Concern: An end-to-end optical layer may be hard to manage
- Solution:
 - 1. Instrumentation in the optical layer to monitor the signal everywhere
 - 2. Automated "analog control plane" to create adaptive system that eases installation and maintenance

Legacy DWDM Systems

Manual DWDM Network Life-Cycle

Cisco.com

Manual provisioning of optical design parameters

Manual provisioning of equipment & topology into EMS/NMS

Complicated Network Planning

Labor-intensive operation

Manual installation, manual power measurements and VOA tweaking at every site for every wavelength

Manual DWDM processes: labor intensive and error prone Result: high OpEx costs

Next Gen Optical Layer

Automated DWDM Network Life-Cycle

Cisco.com

Automated provisioning of all parameters

> Easy changes to design based on actual fiber plant

EMS/NMS learns from the network and stays in sync (Optical OSPF)

Automated end-toend lightpath setup

Automated optical layer for end-to-end connection setup; Manual patching of client at end-points only

Simplified, graphical A-Z lightpath provisioning & trouble shooting

Automated DWDM: simplified TDM-like installation and on-going operation Result: Reduces OpEx, facilitates wide deployment

Next Gen Optical Layer

Enabling Technologies

Planning & simulation tool

Auto
Node
Setup
Power
Control measurement

Sophisticated EMS

Cisco.com

Easy planning with sophisticated tool

Automated optical layer for end-to-end connection setup; Manual patching of client at end-points only

Simplified, graphical A-Z lightpath provisioning & trouble shooting

Operational Efficiency: Legacy vs. NG DWDM

Operationally friendly DWDM – ready for core applications

Cisco.com

Analysis done w/ 1 ROADM – further value will exist w/ more ROADMs

The Switched Optical Layer:

The convergence layer for non-packet traffic as well

Cisco.com

One optical layer for packet and TDM client, as well as future high bandwidth " λ on demand"

Control and Management Planes

- 1. Integrated Management is needed for FCAPS functions, specifically:
 - Provisioning of boxes, card and connectivity
 - Trouble shooting for complex problems
- 2. Integrated control plane for:
 - Fault isolation
 - Autodiscovery
 - Restoration

Why does the Optical Layer need a Control Plane?

- 1. There is no trivial answer, taking into account the usage of the optical layer today
 - Proof point: no wide scale deployment of control plane despite
 6 years of discussions
- Network management can provide many of the same features w/out a CP:
 - A-Z connection setup within seconds
 - Fault correlation
- 3. However, there is significant momentum on the topic:
 - ISOCORE/MPLS Forum multi-vendor interoperability trials
 - OIF multi-vendor interoperability trials for Optical UNI
 - Ongoing Service Provider lab trials
- 4. What are Network Operators hoping to achieve?

Why does the Optical Layer need a Control Plane?

Cisco.com

1. Simplifying network integration:

- It is hard to integrate new technology into management systems
- Operators are hoping that getting vendors to interoperate at the CP level, will allow for simpler management systems and faster integration

2. OPEX reduction:

- Automatic discovery mechanisms
- Alarm correlation and reduction

3. CAPEX reduction:

Shared mesh restoration

4. Increased revenue via new services:

CP enables new applications such as BoD

Roles of the Control Plane (1)

Fault Localization

Cisco.com

 W/out fault localization: every node alarms of the failure

- With fault localization: only adjacent nodes alarm
- Implementation: forward and backward defect indicators via Link Management Protocol (LMP)

Roles of the Control Plane (2)

Autodiscovery

Cisco.com

 W/out autodiscovery: A misconnection is hard to detect

- With autodiscovery: the right configuration is detected
- Implementation: on/off test messages on interfaces coordinated by LMP

Roles of the Control Plane (3)

End to end intelligence

- Once the router and optical layer understand the end to end topology, combined intelligence can be built into the network
- Upon failure in the optical domain, the router can signal to set up a backup path
- Implementation: GMPLS peer model or border model to allow router to participate in optical layer control plane

Values of IP+Optical Integration

Feature	Benefit	
Direct connect of ITU on router into all-optical layer – minimize OEO conversion in the optical layer	1.	Lower CAPEX: no transponders
		Lower OPEX: reduce footprint & power
	3.	Higher reliability: less components
Full flexibility to configure the core w/out manual involvement	Red (OP	uce human labor and human errors EX)
New protocols transported w/out complex mediation		are proof: no need to overhaul work for new service types (CAPEX)
Operational usability comparable to SONET/SDH		I incorporates technologies for y mgmt & troubleshooting (OPEX)
Scalable to more WLs & higher bit rates (40G)		ure proof: long term use for estment

Summary

Cisco.com

Yesterday

Optical and IP separate

- Network management with limited integration
- Manually intensive WDM

Tomorrow

- Ethernet/MPLS into optical
- WDM into routers

 Fully integrated control plane

 Plug and play, reconfigurable WDM

