
Virtualization as a 
CyberInfrastructure

Architecture
Jerry Sobieski

Cyber-Infrastructure Strategist/coPI BRIDGES Project
George Mason University

Presented [virtually] to:
Netcentric 2020
Paris,FR
Dec 4, 2020



Interestingly, finding a definition for “Virtual” as it is used today in cyber-infrastructure 
context is not easy:
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What is “Virtualization” ? 

vir·tu·al (vûrʹcho͞o-əl)                            (the Free Dictionary)
adj.
1. Existing or resulting in essence or effect though not in actual fact, form, or name: the virtual 
extinction of the buffalo.
2. Existing in the mind, especially as a product of the imagination. Used in literary criticism of a 
text.
3. Computers Created, simulated, or carried on by means of a computer or computer network: 
virtual conversations in a chatroom.

Virtualization                                 (wikipedia)
In computing, virtualization refers to the act of creating a virtual (rather than actual) version of 
something, including virtual computer hardware platforms, operating systems, storage devices, 
and computer network resources.



• For our purposes…. Virtualization is the process of creating an abstract user facing 
service object that behaves in a specific manner, often resembling some physical 
component or device, yet whose actual realization in the physical infrastructure is 
independent of any specific hardware device or technology. 

• Virtual Machines(VMs) – behave as if they are actual X86 servers, yet they may be realized in 
actual similar hardware, or emulated in software on any number of diverse hardware devices.   

• Virtual circuits – perceived as (“behaves as”) a point to point data transport conduit -regardless 
how it is realized as sub-rate link sharing, inverse muxing (lag), or multi-layer transport 
technologies.

• Virtual addressing  - behaves as if the user can address limitless memory space. 
• Virtual storage - networked filesystems vs drive/cyl/head/sector

• These objects are “virtually” the same as the objects they represent
• Traditionally, these virtual objects are hardware analogs, e.g. VMs, VCs, etc.
• …but…
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What is “Virtualization” ?   



Virtualization – a broader sense
• Virtual objects are abstractions - they define the user facing object behaviour–

not the physical implementation.
• These are not simply Virtual Machines or clouds…
• Virtual objects can be anything – CI elements, network functions, instruments or sensors, …

• Given that “virtual” objects are abstracted resources that only define 
measurable/verifiable behavior attributes that the user experiences, and have no 
requisite physical implementation…

• …We can thus extend the notion of a “virtual object” to include any resource that has well 
defined user facing attributes regardless of whether there is a precursor hardware object on 
which it is modeled

• We can define any virtual object we like –
• The object attributes bound the limits of performance of individual virtual object instances
• It is the service providers’ responsibility to implement the object instance so as to meet those 

performance attributes…but it is left to the provider to decide how best to accomplish this 
deterministic performance given their infrastructure.



Basic virtualization service model

User facing virtual 
resources environments

Physical Infrastructure

Virtualization Services Layer
Resource Allocation, Scheduling, and Provisioning software



• Virtual Machines are enterprise quality production resources
• Virtual Circuits are standard production services for 30+ years 
• Bare Metal Servers are managed in huge clusters with standard IPMI tools..
• Virtual Storage in various forms is ubiquitous and enterprise quality
• Emerging Virtual Routers and Switching

• Quaga,  VMX, OVS, Virtual OpenFlow Switch,  P4 .... 

Virtual  ≠ Imaginary  !!  

• Not {emulated, simulated, fake, toy, pretend, faux, ephemeral,... }

• Virtual Environments can support and co-exist mature production network services, 
advanced distributed applications, and experimental pilots – all in parallel. 6

A Virtual Cyber-Infrastructure Architecture? ...                 



How do we go from individual virtual objects to a 
virtual CI architecture? 

• We need a means of defining objects in a common model – the characteristics all objects contain:
• Object class, Instance id, Object attributes, port specifications, children objects, port adjacencies

• We need a comprehensive construction model  – grouping basic virtual resources together to 
form more sophisticated and powerful constructs – “composite” virtual resources

• This begins with atomic virtual objects that are mapped through a software abstraction layer onto 
physical infrastructure

• Atomic virtual objects can be grouped to create composite virtual objects
• Composite objects can themselves be grouped hierarchically using OO techniques to construct 

still more complex CI virtual objects – virtual environments or cyber-infrastructure slices
• A virtual environment or CI slice is simply a top level composite virtual object

• We need a simple lifecycle model for virtual objects that define their state: their creation, 
operation, and release.

• We need a simple set of lifecycle primitives (API) to manipulate these objects and to progress them through 
their lifecycle,

• We need a well defined means for individual virtual object instances to exchange information 
with other virtual objects



A Generalized Virtualization Model - “GVM”
Virtualized resources, in user defined/controlled topologies
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GVM Life Cycle Model

start Reserved Active end
Reserve() Activate()

Deactivate()

Release()

Release()

Reserve()

Cancel()

Cancel()Provision()

Release()

Virtual resource life cycle:  GVM / NSI 

• Reserve() – A request to find/create a resource instance and to reserve the 
infrastructure components needed by that resource

• Activate() – Given a reserved resource, this primitive provisions the resource and places 
the resource into service. 

• Query() – Obtain the state information for a particular resource instance
• Deactivate() – Take a resource instance out of service, but retain the reservation. 
• Release() – deactivate a resource and release the reservation
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Host “H1”

Describing testbeds using the Groovy DSL 
– Composite resources descriptions
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triangle {
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“Host” Resource Virtualization Layer (Ubuntu VM/OpenStack)

GVM Layered Resource Virtualization

BareMetal Resource Virtualization Layer
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Virtualization Layering –
Why a formal specification is important

Virtualization layer

Infrastructure objects

Resources

Virtualization layer

Infrastructure objects

Resources

Virtualization layer

Infrastructure objects

Resources

Resources are 
formally 

described using 
the DSL 

specification

The resources are instantiated 
using class specific configuration 
processes acting upon  
infrastructure object(s) to generate 
an output resource of the specified 
type or class.
Since the “resources” and the 
“infrastructure” are at times the the 
same object(s), they can be described 
using the same DSL specifications !  This allows the same tools that monitor 
and manage Resources to also handle 
Infrastructure, and they can function at 
all levels for any client/provider

The virtualization model allows 
stacking of virtualization layers so that 
each layer can act as provider or client 
as needed. 



GVM Multi-Domain Peering
Basic User-Provider relationship
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• Problem:     SDN controllers don’t share switch fabrics
• This poses problems where a single SDN application does not require an entire switch, or 

where multiple SDN applications want to control their own fabric/ports.
• Poses problems where different researchers require different controller agents

• Solution1:   “Slicing” 
• Applications assigned a sub-space or “slice” (typically a subset of VLANs) from of a  global network flow space
• A proxy controller must filter and authorize all flow specs  (e.g. FLowSpaceFireWall) 

• Solution2:  “Partitions” (sometimes called “port delegation”)
• Split the switch into multiple fabric “instances” each with its own context, ports are assigned 

to an instance 
• Still slices a single network flow space into port based subspaces, so flowspecs must still be 

inspected before installation
• No port sharing means backbone links can only be assigned to one particular instance
• Flowspecs still reference physical port and label information - Instances cannot be 

relocated/remapped without breaking the flowspecs and thereby breaking the application.

Innovation:  Runtime Virtual SDN Switching Fabrics
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Controller based Partitioning

0      1      2     3     4      5   ...     31

Master Controller must inspect  all flow specs to insure each controller only manipulates its 
own flowspace.
Controllers are allocated only a subset flow space of the full physical network flow space, 
typically (though not always), the same VLAN set in all platforms

Master 
Controller

Flow space A
Controller

Flow space B
Controller

Flow space C
ControlLer

User b
Controler

User A
Controler

User A
Application

Filters user flowspecs
Physical flowspecs

User B
Application



• Flowspace Delegation (Internet2 FSFW)
• A resource manager allocates flow subspaces to users  (the whole system shares a 

single network flowspace)
• A single master controller intercepts and inspects all flow specs to insure they fall 

within the user’s [sub]space  
• The flowspace is a physical subspace, all control traffic is proxied, inverted proxy trees 

for become complex
• Early innovative thinking to implement slicing in OpenFlow environment

• Partitioning / Port Delegation    (HPOS on HP5900)
• Separate switching instances in the switch device, delegates specific phy ports to each 

instance
• The Openflow protocol handler on the switch inspects flowspecs to insure subspace 

conformance by instance
• Each instance can have its own controller (good), but.. 
• Uses physical flowspecs (no migration), does not share ports across multiple instances 

(no grooming) 18

Openflow Switch Sharing



Switch Partitioning

5    4    1    10   9 2   12   8  15  13   7     6    3
OFX 0 OFX 1 OFX 5

Ctlr 0 Ctlr 1 Ctlr n

OFX Instances with port partioning

Port Map
Port ->  OFX 
0            n/ a
1 0
2            1
3            5
4            0
5 ......... 0
6            5
7 5
8 1
9 0
10  ...... 0
11          n/a
12          1
...

Each instance has its own controller, the switch processor only installs flowspecs from controller that match 
ports assigned to that instance. 
Except for the port dimension, the user has full network flow space (no VLAN slicing is needed)
User Flow specs are physical port based flowspecs – moving the instance will break the flowspecs, 
Ports cannot be split – the entire port is assigned to an instance – no flow grooming / aggregation
Useful in small ways, but not scalable.

0     1  2       3    4  5      6     7    8    9   10  11   12  13  14  15 ... 31

31

Breaks application 
[physical] flow specs 



• Solution:  Virtualized Openflow Switch Fabrics 
• This is Partitioning with a twist:
• Each fabric instance has “virtual Ports” defined by the user:   

vport(1) ... vPort(n)
• For in-packets, physical Port/outerVLAN (Label ) 2-tuple of the frame are remapped 

(rewtritten) to an instanceID/virtualPort
• The outer tag can be optionally popped on input, or pushed on output

• The result:
• The user writes flowspecs against the virtual ports, 
• When combined with fully encapsulating virtual circuits (ala GVS), the user is able to 

command their own full network flowspace i.e. no more flowspace proxies, or slicing
• Because the Virtual Switch is no longer tied to specific physical ports, it can be moved and 

remapped-> Enables operational migration and grooming – and “save” of the switch state.
• The instance can be relocated (vports remapped to different physical ports) without the user 

application needing to rediscover the topology and rewrite all their flowspecs.  

Innovation in GVS:  Virtual OpenFlow Fabrics
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Virtual Switch Instances

0            1           2             3      4     5    6     7    8    9   10  11   12  13 ... 31

0    1     2    3    4 0    1    2  0     1    2    3    4
VOX  0 VOX  1 VOX n

Virtual Switch with Virtual Circuit port mapping

Port, label  ->    VOX, vPort
0, 100 0, 2 in: pop 100, out: push 100
0, 127 n, 0 in: pop 127, out: push 127
0, 2386 0, 3 in: pop 2386, out: push 2386
1, - 0, 1    (no xport header processing)
2, 100 n, 4 in: pop 100, out: push 100
2, 3140 1, 0 in: pop 100, out: push 100
3, 25                     0, 0 in: pop 100, out: push 100
3, 1870 n, 2 in: pop 100, out: push 100
...

Port+Tag remapping allows users to use virtual 
flowspecs
Allows instances to share a physical port 
Allows transport tagging to be used for VCs, and 
to be popped before user sees it.  Enables 
migration and grooming, Checkpoint/restart.

100
127 2386 External

RM 
(GTS)



How did we do this?

• What does it require?
• Modify switch/router software to support virtual OpenFlow instances 

• Add configuration commands to device mgmt API to define instances, specify port map
• Define an “instance” – Each virtual instance has its own context: memory for counters, 

FIB, fabric ID, routing processor, protocol state for each instance,...
• Add the port map prolog/epilog microcode into the fast path microcode:

• Ingress: Lookup PhyPort : qtag/label in table;  set metaData to corresponding Vswitch : 
Vport, pop outer qtag/label.

• Egress: Lookup Vswitch, Vport in table, push outer qtag, queue to PhyPort
• Virtualization sw (GVS) coordinates VC tags/labels, STPs, and Vports to build the port mapping 

table. 
• Vendor collaboration – We need vendor buy-in that such virtual routers can be a useful service 

model for global virtual environments
• Corsa Technologies is the first vendor to work with us to deliver this feature
• Demo’d in the lab, integration into GTS this summer,  available in production Sep 2016
• Line rate- at 100 Gbps (!)



4 3
4

2
3
4

1
2
3
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2 1

• The pipeline design of fastpath packet handling is required to handle very high 
packet rates  ... 100G

• The pipeline completes the processing of one packet on each cycle
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Why does this work?

Tim
e -> Each Packet has a fixed 

latency of n=3 clocks

4 3 2 1

4 3 2 1

Add vlookup+pop prolog

Add vlookup+push epilog

Result is slight increase in latency 
(prolog+epilog), but the aggregate packet 
processing rate of 1 pkt/clock is the same !! 

Matching rule->



BRIDGES- Binding Research Infrastructures for the 
Deployment of Global Experimental Science 

100 Gbps Eth/OTN circuits

100 Gbps Eth/OTN circuits

BRIDGES 
PoP

BRIDGES 
PoP

BRIDGES 
PoP

BRIDGES 
PoP

New York City Amsterdam

ParisWashington

BRIDGES  US  PoP

Prod.
OXP

Res

Res

Res

OTN
Switch

ServerServerServerServer

L2 
QoS+BE
Switch

OF/P4
BYOD

West wave
100 Gbps

North wave
100 Gbps

BRIDGES   EU PoP

Prod.
OXP

Res

Res

Res

OTN
Switch

ServerServerServerServer

L2 
QoS+BE
Switch

OF/P4
BYOD

East wave
100 Gbps

South wave
100 Gbps

EU Research
Collaborators
Fed4FIRE (15+ testbeds)
EU EMPOWER
PlanetLab-EU
OneLab
SLICES
Grid 5000
GEANT Testbeds Service*
DFN-GVS*, CESNET-GVS*
…

US Research
Collaborators
FABRIC
COSMOS
Chameleon
CloudLab
Internet2
StarLight
…

National Science Foundation
* Currently running GVS capabilities

https://www.nsf.gov/


`
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BRIDGES – Virtualization as an Architecture 
Application Specific Distributed Environments

Lab A

Lab B

Lab C

Global science application “Alpha”  
A customized WAN infrastrcuture consisting of a broad range of dynamically allocated 

resources that are controlled by the client using SDN principles

Global science environment 
“Beta” 

US Projects and Facilities
EU Projects and Facilities



• Virtualization enables global common services ... 
• Allows common services to be defined, without dependence on specific hardware 

infrastructure particulars (technology agnostic) – Think Globally, Act Locally

• Virtualization enables automated orchestrated service delivery  
• Common service model is a necessity for automate processes.  
• Resource mgmt is software driven – service delivery is measured in seconds
• Reduced error, enhanced flexibility of services. 

• Operational considerations
• Hardware sharing dramatically improves cost efficiency  (reduced CapEx!)
• Migration and grooming can efficiently distribute/concentrate workload as needed
• Secure: Virtual objects are fully isolated and insulated from one another 
• Well bounded virtual service objects can be easily managed across many users
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Why is Virtualization important?  



Futures:  What is the roadmap?
• Increased adoption – get more projects and networks to adopt and deploy 

a generalized virtualization capability –
• Replicate BRIDGES model between US and Asia/Pacific, and US and Latin America

• Community development and evolution
• Simplify the software configuration – easier pilot deployments

• Increased contiguous canvas in US and EU regional R&E networks (and other regions)
• Formalize the specification – many details need thinking and a formalized approach
• Multi-domain services – enable global virtual slicing ala BRIDGES
• Migration and grooming capabilities of remapping resources for operational 

considerations and checkpoint restart
• Common object specifications
• Common policy to enable multi-domain resource acquisition



The End

• FFI:   
• Jerry Sobieski   jsobiesk@gmu.edu or jerry@sobieski.net
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