
Virtualization as a
CyberInfrastructure

Architecture
Jerry Sobieski

Cyber-Infrastructure Strategist/coPI BRIDGES Project
George Mason University

Presented [virtually] to:
Netcentric 2020
Paris,FR
Dec 4, 2020

Interestingly, finding a definition for “Virtual” as it is used today in cyber-infrastructure
context is not easy:

2

What is “Virtualization” ?

vir·tu·al (vûrʹcho͞o-əl) (the Free Dictionary)
adj.
1. Existing or resulting in essence or effect though not in actual fact, form, or name: the virtual
extinction of the buffalo.
2. Existing in the mind, especially as a product of the imagination. Used in literary criticism of a
text.
3. Computers Created, simulated, or carried on by means of a computer or computer network:
virtual conversations in a chatroom.

Virtualization (wikipedia)
In computing, virtualization refers to the act of creating a virtual (rather than actual) version of
something, including virtual computer hardware platforms, operating systems, storage devices,
and computer network resources.

• For our purposes…. Virtualization is the process of creating an abstract user facing
service object that behaves in a specific manner, often resembling some physical
component or device, yet whose actual realization in the physical infrastructure is
independent of any specific hardware device or technology.

• Virtual Machines(VMs) – behave as if they are actual X86 servers, yet they may be realized in
actual similar hardware, or emulated in software on any number of diverse hardware devices.

• Virtual circuits – perceived as (“behaves as”) a point to point data transport conduit -regardless
how it is realized as sub-rate link sharing, inverse muxing (lag), or multi-layer transport
technologies.

• Virtual addressing - behaves as if the user can address limitless memory space.
• Virtual storage - networked filesystems vs drive/cyl/head/sector

• These objects are “virtually” the same as the objects they represent
• Traditionally, these virtual objects are hardware analogs, e.g. VMs, VCs, etc.
• …but…

3

What is “Virtualization” ?

Virtualization – a broader sense
• Virtual objects are abstractions - they define the user facing object behaviour–

not the physical implementation.
• These are not simply Virtual Machines or clouds…
• Virtual objects can be anything – CI elements, network functions, instruments or sensors, …

• Given that “virtual” objects are abstracted resources that only define
measurable/verifiable behavior attributes that the user experiences, and have no
requisite physical implementation…

• …We can thus extend the notion of a “virtual object” to include any resource that has well
defined user facing attributes regardless of whether there is a precursor hardware object on
which it is modeled

• We can define any virtual object we like –
• The object attributes bound the limits of performance of individual virtual object instances
• It is the service providers’ responsibility to implement the object instance so as to meet those

performance attributes…but it is left to the provider to decide how best to accomplish this
deterministic performance given their infrastructure.

Basic virtualization service model

User facing virtual
resources environments

Physical Infrastructure

Virtualization Services Layer
Resource Allocation, Scheduling, and Provisioning software

• Virtual Machines are enterprise quality production resources
• Virtual Circuits are standard production services for 30+ years
• Bare Metal Servers are managed in huge clusters with standard IPMI tools..
• Virtual Storage in various forms is ubiquitous and enterprise quality
• Emerging Virtual Routers and Switching

• Quaga, VMX, OVS, Virtual OpenFlow Switch, P4

Virtual ≠ Imaginary !!

• Not {emulated, simulated, fake, toy, pretend, faux, ephemeral,... }

• Virtual Environments can support and co-exist mature production network services,
advanced distributed applications, and experimental pilots – all in parallel. 6

A Virtual Cyber-Infrastructure Architecture? ...

How do we go from individual virtual objects to a
virtual CI architecture?

• We need a means of defining objects in a common model – the characteristics all objects contain:
• Object class, Instance id, Object attributes, port specifications, children objects, port adjacencies

• We need a comprehensive construction model – grouping basic virtual resources together to
form more sophisticated and powerful constructs – “composite” virtual resources

• This begins with atomic virtual objects that are mapped through a software abstraction layer onto
physical infrastructure

• Atomic virtual objects can be grouped to create composite virtual objects
• Composite objects can themselves be grouped hierarchically using OO techniques to construct

still more complex CI virtual objects – virtual environments or cyber-infrastructure slices
• A virtual environment or CI slice is simply a top level composite virtual object

• We need a simple lifecycle model for virtual objects that define their state: their creation,
operation, and release.

• We need a simple set of lifecycle primitives (API) to manipulate these objects and to progress them through
their lifecycle,

• We need a well defined means for individual virtual object instances to exchange information
with other virtual objects

A Generalized Virtualization Model - “GVM”
Virtualized resources, in user defined/controlled topologies

L1

B

L2

C
L3

A

p0 p1
src

dst
if1

if2
dstsrc

dst

src
if0

if1 if3if2

class: Link
class: Link

Class: Link

class: Host

class: OFX

class: BMS

• All network components (the nodes and links in the
graph) are treated as generalized Resources

• Data transits resources thru explicitly defined interfaces,
or Ports

• Data flow topology is defined by port Adjacencies
A C

B

SDN Switch
“B”

Link “L1”

Virtual environment/slice:
“Alpha” as conceived

Server
“C”Link

“L3”

Link “L2”

Virtual Machine
“A”

“Derived Resource Graph”
data plane

Resources Ports Adjacencies

GVM Life Cycle Model

start Reserved Active end
Reserve() Activate()

Deactivate()

Release()

Release()

Reserve()

Cancel()

Cancel()Provision()

Release()

Virtual resource life cycle: GVM / NSI

• Reserve() – A request to find/create a resource instance and to reserve the
infrastructure components needed by that resource

• Activate() – Given a reserved resource, this primitive provisions the resource and places
the resource into service.

• Query() – Obtain the state information for a particular resource instance
• Deactivate() – Take a resource instance out of service, but retain the reservation.
• Release() – deactivate a resource and release the reservation

H1 H2
L1

P1 P2
P1

P2

P1
P2

Src Dst
Host Host

Link

“RegionalOfc” composite class
A composite resource contains

other Resources, external
ports, and port adjacencies

P1 P2

“Host” atomic class:
Ubuntu VM, 4GB,
1 core. Two ports

Src Dst

“Link” atomic class:
EoMPLS VC, BW, two ports

P1 P2

RegionalOfc

P1 P2

RegionalOfc

“DRnetwork”
composite class

work
Src Dst

Link

prot
Src Dst

Link

H1 H2

L1

P1 P2

P1
P2

P1
P2

Src Dst
Host Host

Link
Class=RegionalOfc
instance #1

H1 H2

L1

P1 P2

P1

P2

P1

P2

Src Dst
Host Host

Link

Class=RegionalOfc
instance #2

Instance of class “DRnetwork”
named “AcmeWidgets”

Class=DRnetwork

work
Src

Dst

Link

prot
Src

Dst

Link

Atomic Resources, Composite Resources
From atomic resources to running virtual environments

Virtualization
mapping layer

Host “H1”

Describing testbeds using the Groovy DSL
– Composite resources descriptions

p1
p2

location = HAM

triangle {
host {

id="h1"
location="ham"
port { id=”p1" }
port { id=”p2" }

}
host {

id="h2"
location="mil"
port { id=”p1" }
port { id=”p2" }

}
host {

id="h3"
location="lon"
port { id=”p1" }
port { id=”p2" }

}
link {

id="l1"
port { id="src" }
port { id="dst" }

}
link {

id="l2"
port { id="src" }
port { id="dst" }

}

link {
id="l3"
port { id="src" }
port { id="dst" }

}

adjacency h1.p1, l1.src
adjacency h2.p2, l1.dst

adjacency h2.p1, l2.src
adjacency h3.p2, l2.dst

adjacency h3.p1, l3.src
adjacency h1.p2, l3.dst

}

Host “H1”

Link “L1”
Host “H2”

Testbed concept

MILHAM

Testbed
“Triangle”

p1
Host “H2”

location = MIL
p2src

Link “L1”

dst

Bubble diagram

Host “H3” LON

src
Link “L2”dstsrc

Link “L3”

dst

location = LON
p1

Host “H3”

p2

Link “L2”Link “L3”

https://www.geant.org/
https://www.facebook.com/GEANTcommunity/
https://soundcloud.com/geant-sounds
https://twitter.com/GEANTnews
https://www.youtube.com/user/GEANTtv

“Host” Resource Virtualization Layer (Ubuntu VM/OpenStack)

GVM Layered Resource Virtualization

BareMetal Resource Virtualization Layer

User C
Requesting BareMetal User A

User B
User X

User Y

Resources

Resources

Infrastructure

Infrastructure Data Center
blade server

Resources

Bare Metal
Server

Resources

“OVS” Resource Virtualization

User X

Open Vswitch
Resources

Rack servers

Resources

InfrastructureUbuntu Virtual
Machine Resources

Virtualization Layering –
Why a formal specification is important

Virtualization layer

Infrastructure objects

Resources

Virtualization layer

Infrastructure objects

Resources

Virtualization layer

Infrastructure objects

Resources

Resources are
formally

described using
the DSL

specification

The resources are instantiated
using class specific configuration
processes acting upon
infrastructure object(s) to generate
an output resource of the specified
type or class.
Since the “resources” and the
“infrastructure” are at times the the
same object(s), they can be described
using the same DSL specifications ! This allows the same tools that monitor
and manage Resources to also handle
Infrastructure, and they can function at
all levels for any client/provider

The virtualization model allows
stacking of virtualization layers so that
each layer can act as provider or client
as needed.

GVM Multi-Domain Peering
Basic User-Provider relationship

UA PA

MD
PAUA PA

1. Request

2. Response

1. Request

4. Response

2. Request

3. Response

In the Mult-Domain model, the Multi-Domain Provider Agent plays both roles:
“Provider” to upstream User Agents, and “User” to downstream Provider Agents

MDPA

GVM API

GVM API GVM API

Basic User-Provider
agent interaction

Local
PA 0

UA

MD
PA

Local
PA 1

User

Provider

User
Provider

GVM API

GVM API

RCA-VM
RCA-VC

RCA-OFX

Local
PA 1

GVM API

User

Provider

GVM
Domain B

GVM
Domain C

GVM
Domain D

GVM Domain A

MD
PA

MD
PA

MD
PA

..to other downstream domains

“downstream”
domains

Multi-Domain One-Stop Shopping
The MDPA can implement any heuristic search algorithm
from exhaustive breadth-first search to a directory
based discovery... This is an implementation issue.

• Problem: SDN controllers don’t share switch fabrics
• This poses problems where a single SDN application does not require an entire switch, or

where multiple SDN applications want to control their own fabric/ports.
• Poses problems where different researchers require different controller agents

• Solution1: “Slicing”
• Applications assigned a sub-space or “slice” (typically a subset of VLANs) from of a global network flow space
• A proxy controller must filter and authorize all flow specs (e.g. FLowSpaceFireWall)

• Solution2: “Partitions” (sometimes called “port delegation”)
• Split the switch into multiple fabric “instances” each with its own context, ports are assigned

to an instance
• Still slices a single network flow space into port based subspaces, so flowspecs must still be

inspected before installation
• No port sharing means backbone links can only be assigned to one particular instance
• Flowspecs still reference physical port and label information - Instances cannot be

relocated/remapped without breaking the flowspecs and thereby breaking the application.

Innovation: Runtime Virtual SDN Switching Fabrics

16

Controller based Partitioning

0 1 2 3 4 5 ... 31

Master Controller must inspect all flow specs to insure each controller only manipulates its
own flowspace.
Controllers are allocated only a subset flow space of the full physical network flow space,
typically (though not always), the same VLAN set in all platforms

Master
Controller

Flow space A
Controller

Flow space B
Controller

Flow space C
ControlLer

User b
Controler

User A
Controler

User A
Application

Filters user flowspecs
Physical flowspecs

User B
Application

• Flowspace Delegation (Internet2 FSFW)
• A resource manager allocates flow subspaces to users (the whole system shares a

single network flowspace)
• A single master controller intercepts and inspects all flow specs to insure they fall

within the user’s [sub]space
• The flowspace is a physical subspace, all control traffic is proxied, inverted proxy trees

for become complex
• Early innovative thinking to implement slicing in OpenFlow environment

• Partitioning / Port Delegation (HPOS on HP5900)
• Separate switching instances in the switch device, delegates specific phy ports to each

instance
• The Openflow protocol handler on the switch inspects flowspecs to insure subspace

conformance by instance
• Each instance can have its own controller (good), but..
• Uses physical flowspecs (no migration), does not share ports across multiple instances

(no grooming) 18

Openflow Switch Sharing

Switch Partitioning

5 4 1 10 9 2 12 8 15 13 7 6 3
OFX 0 OFX 1 OFX 5

Ctlr 0 Ctlr 1 Ctlr n

OFX Instances with port partioning

Port Map
Port -> OFX
0 n/ a
1 0
2 1
3 5
4 0
5 0
6 5
7 5
8 1
9 0
10 0
11 n/a
12 1
...

Each instance has its own controller, the switch processor only installs flowspecs from controller that match
ports assigned to that instance.
Except for the port dimension, the user has full network flow space (no VLAN slicing is needed)
User Flow specs are physical port based flowspecs – moving the instance will break the flowspecs,
Ports cannot be split – the entire port is assigned to an instance – no flow grooming / aggregation
Useful in small ways, but not scalable.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 31

31

Breaks application
[physical] flow specs

• Solution: Virtualized Openflow Switch Fabrics
• This is Partitioning with a twist:
• Each fabric instance has “virtual Ports” defined by the user:

vport(1) ... vPort(n)
• For in-packets, physical Port/outerVLAN (Label) 2-tuple of the frame are remapped

(rewtritten) to an instanceID/virtualPort
• The outer tag can be optionally popped on input, or pushed on output

• The result:
• The user writes flowspecs against the virtual ports,
• When combined with fully encapsulating virtual circuits (ala GVS), the user is able to

command their own full network flowspace i.e. no more flowspace proxies, or slicing
• Because the Virtual Switch is no longer tied to specific physical ports, it can be moved and

remapped-> Enables operational migration and grooming – and “save” of the switch state.
• The instance can be relocated (vports remapped to different physical ports) without the user

application needing to rediscover the topology and rewrite all their flowspecs.

Innovation in GVS: Virtual OpenFlow Fabrics

20

Virtual Switch Instances

0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 31

0 1 2 3 4 0 1 2 0 1 2 3 4
VOX 0 VOX 1 VOX n

Virtual Switch with Virtual Circuit port mapping

Port, label -> VOX, vPort
0, 100 0, 2 in: pop 100, out: push 100
0, 127 n, 0 in: pop 127, out: push 127
0, 2386 0, 3 in: pop 2386, out: push 2386
1, - 0, 1 (no xport header processing)
2, 100 n, 4 in: pop 100, out: push 100
2, 3140 1, 0 in: pop 100, out: push 100
3, 25 0, 0 in: pop 100, out: push 100
3, 1870 n, 2 in: pop 100, out: push 100
...

Port+Tag remapping allows users to use virtual
flowspecs
Allows instances to share a physical port
Allows transport tagging to be used for VCs, and
to be popped before user sees it. Enables
migration and grooming, Checkpoint/restart.

100
127 2386 External

RM
(GTS)

How did we do this?

• What does it require?
• Modify switch/router software to support virtual OpenFlow instances

• Add configuration commands to device mgmt API to define instances, specify port map
• Define an “instance” – Each virtual instance has its own context: memory for counters,

FIB, fabric ID, routing processor, protocol state for each instance,...
• Add the port map prolog/epilog microcode into the fast path microcode:

• Ingress: Lookup PhyPort : qtag/label in table; set metaData to corresponding Vswitch :
Vport, pop outer qtag/label.

• Egress: Lookup Vswitch, Vport in table, push outer qtag, queue to PhyPort
• Virtualization sw (GVS) coordinates VC tags/labels, STPs, and Vports to build the port mapping

table.
• Vendor collaboration – We need vendor buy-in that such virtual routers can be a useful service

model for global virtual environments
• Corsa Technologies is the first vendor to work with us to deliver this feature
• Demo’d in the lab, integration into GTS this summer, available in production Sep 2016
• Line rate- at 100 Gbps (!)

4 3
4

2
3
4

1
2
3

1
2 1

• The pipeline design of fastpath packet handling is required to handle very high
packet rates ... 100G

• The pipeline completes the processing of one packet on each cycle

23

Why does this work?

Tim
e -> Each Packet has a fixed

latency of n=3 clocks

4 3 2 1

4 3 2 1

Add vlookup+pop prolog

Add vlookup+push epilog

Result is slight increase in latency
(prolog+epilog), but the aggregate packet
processing rate of 1 pkt/clock is the same !!

Matching rule->

BRIDGES- Binding Research Infrastructures for the
Deployment of Global Experimental Science

100 Gbps Eth/OTN circuits

100 Gbps Eth/OTN circuits

BRIDGES
PoP

BRIDGES
PoP

BRIDGES
PoP

BRIDGES
PoP

New York City Amsterdam

ParisWashington

BRIDGES US PoP

Prod.
OXP

Res

Res

Res

OTN
Switch

ServerServerServerServer

L2
QoS+BE
Switch

OF/P4
BYOD

West wave
100 Gbps

North wave
100 Gbps

BRIDGES EU PoP

Prod.
OXP

Res

Res

Res

OTN
Switch

ServerServerServerServer

L2
QoS+BE
Switch

OF/P4
BYOD

East wave
100 Gbps

South wave
100 Gbps

EU Research
Collaborators
Fed4FIRE (15+ testbeds)
EU EMPOWER
PlanetLab-EU
OneLab
SLICES
Grid 5000
GEANT Testbeds Service*
DFN-GVS*, CESNET-GVS*
…

US Research
Collaborators
FABRIC
COSMOS
Chameleon
CloudLab
Internet2
StarLight
…

National Science Foundation
* Currently running GVS capabilities

https://www.nsf.gov/

`

25

BRIDGES – Virtualization as an Architecture
Application Specific Distributed Environments

Lab A

Lab B

Lab C

Global science application “Alpha”
A customized WAN infrastrcuture consisting of a broad range of dynamically allocated

resources that are controlled by the client using SDN principles

Global science environment
“Beta”

US Projects and Facilities
EU Projects and Facilities

• Virtualization enables global common services ...
• Allows common services to be defined, without dependence on specific hardware

infrastructure particulars (technology agnostic) – Think Globally, Act Locally

• Virtualization enables automated orchestrated service delivery
• Common service model is a necessity for automate processes.
• Resource mgmt is software driven – service delivery is measured in seconds
• Reduced error, enhanced flexibility of services.

• Operational considerations
• Hardware sharing dramatically improves cost efficiency (reduced CapEx!)
• Migration and grooming can efficiently distribute/concentrate workload as needed
• Secure: Virtual objects are fully isolated and insulated from one another
• Well bounded virtual service objects can be easily managed across many users

26

Why is Virtualization important?

Futures: What is the roadmap?
• Increased adoption – get more projects and networks to adopt and deploy

a generalized virtualization capability –
• Replicate BRIDGES model between US and Asia/Pacific, and US and Latin America

• Community development and evolution
• Simplify the software configuration – easier pilot deployments

• Increased contiguous canvas in US and EU regional R&E networks (and other regions)
• Formalize the specification – many details need thinking and a formalized approach
• Multi-domain services – enable global virtual slicing ala BRIDGES
• Migration and grooming capabilities of remapping resources for operational

considerations and checkpoint restart
• Common object specifications
• Common policy to enable multi-domain resource acquisition

The End

• FFI:
• Jerry Sobieski jsobiesk@gmu.edu or jerry@sobieski.net

mailto:jsobiesk@gmu.edu

	Virtualization as a CyberInfrastructure Architecture
	What is “Virtualization” ?
	What is “Virtualization” ?
	Virtualization – a broader sense
	Basic virtualization service model
	A Virtual Cyber-Infrastructure Architecture? ...
	How do we go from individual virtual objects to a virtual CI architecture? �
	A Generalized Virtualization Model - “GVM”�Virtualized resources, in user defined/controlled topologies
	GVM Life Cycle Model
	Atomic Resources, Composite Resources � 	From atomic resources to running virtual environments
	Describing testbeds using the Groovy DSL �– Composite resources descriptions
	GVM Layered Resource Virtualization
	Virtualization Layering – �	Why a formal specification is important
	スライド番号 14
	スライド番号 15
	Innovation: Runtime Virtual SDN Switching Fabrics
	Controller based Partitioning
	Openflow Switch Sharing
	Switch Partitioning
	Innovation in GVS: Virtual OpenFlow Fabrics
	Virtual Switch Instances
	How did we do this?
	Why does this work?
	BRIDGES- Binding Research Infrastructures for the 			 Deployment of Global Experimental Science
	BRIDGES – Virtualization as an Architecture �	Application Specific Distributed Environments
	Why is Virtualization important?
	Futures: What is the roadmap?
	The End

